#### Sensors for UIs

#### (Physical & Tangible User Interfaces)

#### Tutorial @ Mensch&Computer 2003 Stuttgart, September 2003 Albrecht Schmidt, LMU München Christian Decker, Uni Karlsruhe

A.Schmidt, C.Decker, Mensch & Computer 2003, Stuttgart

## Implicit Interaction and Sensor-based User Interfaces

- Implicit Interaction user is observed by the system
- Example: outdoor light in front of the house that switches on when someone walks by

Is it as simple as it looks?

More design decisions! e.g. when switch it off?



- Sensors:
  - light level
  - activity
- Actuator
  - light (on/off)
- Rules
  - if (dark & movement) then light(on)







## **Perception in Creatures**

- Vision
- Hearing
- Smell
- Taste
- Touch
- Temperature
- Gravity and acceleration
- Position and constellation of (body) parts
- General magnetic fields and in particular the magnetic field of the earth
- Electric fields

### Motivating the use of Sensors Contexts related to sensory input

| Context                | Related sensory input                                                                                                                                  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| User sleeps            | It is dark, silent, type of location is indoors, time is "night-<br>time", user is horizontal, specific motion pattern, absolute<br>position is stable |
| User is watching<br>TV | Light level/colour is changing, certain audio level (not silent),<br>type of location is indoors, user is mainly stationary                            |
| User is cycling        | Location type is outdoors, user is sitting, and specific motion pattern of legs, absolute position is changing.                                        |

### Technologies for context acquisition

| SensingTechnologies                    |  |
|----------------------------------------|--|
| Light and Vision                       |  |
| Audio                                  |  |
| Movement and Acceleration              |  |
| Location and Position                  |  |
| Magnetic Field and Orientation         |  |
| Proximity, Touch and User Interaction  |  |
| Temperature, Humidity and Air Pressure |  |
| Weight                                 |  |
| Motion Detection                       |  |
| Gas-Sensors and Electronic Noses       |  |
| Bio-Sensors                            |  |
| Zero-Power Sensors                     |  |

### Sensor don't come for free Constraints on Sensing

Requirements on Sensing in a Ubiquitous Computing

Design and Usability

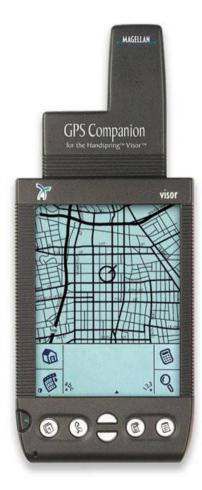
Energy Consumption

Calibration

Start-up Time

Robustness and Reliability

Portability, Size and Weight


Unobtrusiveness, Social Acceptance and User Concern

Price and Introduced Cost

Precision and Openness

## Location Information

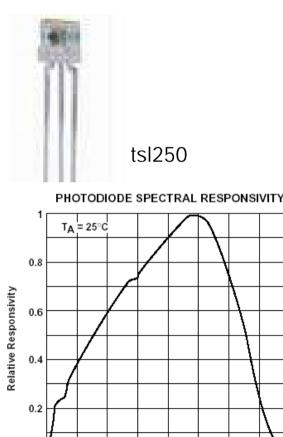
- Get location via GPS
  - Magellan GPS Companion for Palm PDAs
  - Has its own battery
  - Lasts for about 10 hours permanent usage
- Wavelan
- Mobile Celluar Network



# ID Sensors (Barcode, RFID)

- Get identification via Barcode or RFID Reader
- Symbol SPT1500 Palm Scanner reads UPC/EAN/JAN, Code 128, Code 39, Code 93, Interleaved 2 of 5, Discrete 2 of 5, Codabar, MSI Plessey
- GD-CF1 is a RFID compact flash reader for reading/writing of 125 KHz transponder




Palmintegrated BarCode Reader



GD-CF1 attached to a Pocket PC

### Light Sensors

- For various wavelength (IR, UV, etc.)
- Information about intensity, direction, reflection
- Distinguish between different types of light (sunlight, candle light, artificial light...)
- Low cost, low energy consumption



300

500

700

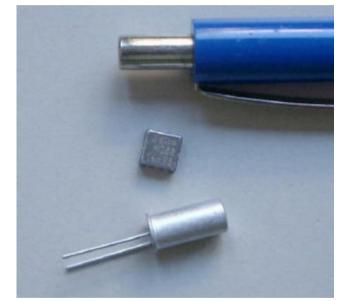
 $\lambda$  – Wavelength – nm

900

110

## Audio Sensors

- Microphones for human hearable audio
- Special sensors for ultrasonic
- Get basic information such as noise, sound level, type of input (noisy, music, speaking), base frequency (requires simple calculations)
- Complex audio analysis by speech recognition (requires more processing power)
- Multiple microphones (arrays or distributed) for determining sound direction, distance, and even location






Ultra sonic sender/receiver by lynxmotion.com

## **Acceleration / Movement**

- Different type of sensors for basic information like inclination, motion, vibration and acceleration
- Sensors are ball switches, angular sensors, accelerometers
- Information like type of motion (car driving, walking, running, stationary) and orientation in space can be derrived
- Acceleration is especially interesting in examination of usage patterns



ADXL acceleration sensor and ball switch

## **Further Physical Properties**

- Temperature
  - Cheap
  - Monitor body heat



- Directly, i.e. with conductive planes (e.g., skin conductance, human as capacitor) or force sensors
- Indirectly, i.e. using light sensors or temperature sensors (energy issue)
- Usage as switches or derrive information about handling a device









Truetip.com



Force sensor (flexible resistor)

## **Further Physical Properties**

- Magnetic Field
  - Magnetic field sensor works similar to a compass
  - Detects direction or direction changing (movement)
  - False information because of interference by other devices
- Air Pressure
  - Indication of altitude
  - Detects changes in the environment e.g. closing a door



zoom-one.com

LEGO Air Pressure Sensor (techo-stuff.com)

A.Schmidt, C.Decker, Mensch & Computer 2003, Stuttgart

## **Activity and Presence Sensors**

- Proximity/Vicinity (Passive IR)
  - Motion detection by body heat
  - If sensor is mobile the movement of the device itself is detected
- Login-Information/Profiles
  - Identify the user of a system
  - System is able to load presets
  - Personalization



**PIR Sensor** 



## **Visual Sensors**

- C-MOS Camera
  - Captures visual information
  - Basic information are for instance amount of motion, light level (require little processing power)
  - Complex information like object identification and tracking, gesture recognition (require more processing power)
  - Discomfort problem because of being watched
- OCR (Optical Character Recognition)
  - Graphical Symbols are interpreted as letters and words by a computer
  - Preferred way to enter text into PDAs



Wireless CMOS Camera



Microsoft Transcriber on Pocket PC

A.Schmidt, C.Decker, Mensch & Computer 2003, Stuttgart

### Examples of Sensor based UIs

### Orientations aware PDA (my first sensor-based UI)





Portrait



**Context-Aware Computing** 

 location is just one dimension...

Extremely simple, but still it creates a new experience

- 2-Bit Input
- Not an input device
- Very specific function

## **Project TEA**

(European project, completed in 2000)

#### Technology for Enabling Awareness

#### Project goal

 building an add-on component that supplies awareness to a mobile device

#### Technology

 Sensors to provide location independent contexts (acceleration, light, sound, temperature)

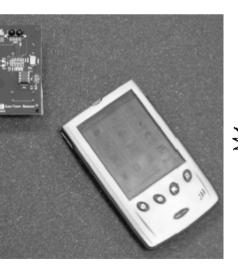


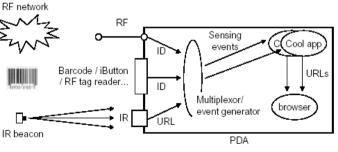
A.Schmidt, C.Decke

## Project TEA cont.

#### **Applications**

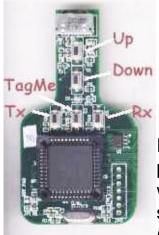
- user interface adapts to situations/context
- Implemented example applications
  - automated profile change
  - context sharing
- Recognized contexts
  - hand
  - table
  - Suitcase
  - wardrobe
  - outside





# WebSign (HP)

- PDA with location, orientation, and tilt-angle
- Showing information that about the object you are pointing at
- Cooltown Project




Prototype Websign client with magetometer, GPS receiver, and the websign kernel





PDA with IR Beacon (left) and PDA sensing platform (right)

A.Schmidt, C.Decker, Mensch & Computer 2003, Stuttgart



IR Taggy, a personal device which stores and squirts references (URL)

#### Sensing Techniques for Mobile Interaction

- Hinckley et al.
- Video (3 min)

## **Further Reading**

- A. Schmidt, K. Van Laerhoven.
  <u>How to Build Smart Appliances?</u> *IEEE Personal Communications* 8(4), August 2001.pp. 66-71.
- Hinckley, K., Pierce, J., Sinclair, M., Horvitz, E., Sensing Techniques for Mobile Interaction, ACM UIST 2000 Symposium on User Interface Software & Technology, CHI Letters 2 (2), pp. 91-100. Best Paper Award of UIST 2000.
   [MPEG Video – running time 3 minutes, 15 sec]
   [PDF] [PDF for color printer]