

Designing Physical Interaction with Sensor Drawbacks in Mind

Stavros Antifakos¹, Jan Borchers², and Bernt Schiele¹ Perceptual Computing and Computer Vision¹ Human Computer Interaction Laboratory² ETH Zurich, Switzerland

{antifakos, borchers, schiele}@inf.ethz.ch http://www.vision.ethz.ch/pccv/¹ http://hci.ethz.ch/²

Simply bothering

- automatic doors
 - only open when person is really close
 - open when they are not supposed to
 - 70% of people use their hand to activate train door
- automatic water faucets
 - can really bother when they don't work well

=>how can we make interaction better?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- what are the problems with perception?
- where do they come from?
 - => a model for perception
- what can we do to overcome these problems?
 - => techniques applied in classic HCI

Perception Tasks

uncertainty

- systems are slow
- systems are not always right

Imagine a pen that you can write with and control your HiFi by performing gestures...

- gestures trigger certain actions of the HiFi
- pen has inertial sensor integrated to recognize the gestures (example: accelerometers and gyroscopes)

Perception Model

Sensing system level	example
Task (for Application)	HiFi Control
Classification System	Gesture Recognizer (HMM, statistical models)
Sensor	Acceleration, Gyroscope
Physical Signal	3D hand movement

Sensing system level	
Task	
Classification System	
Sensor	

Physical Signal

Robustness - How well does the system work when the external usage conditions change?

HiFi Control – can I control the HiFi while I am talking to another person ?

Physical Interaction'03 - Udine

Sensing system level	
Task	<i>Recognition Rate - How</i> <i>well does the system work</i> <i>under fixed external</i>
Classification System	conditions? (evaluated on a set of experimental data)
Sensor	
Physical Signal	Gesture Recognizer – how many percent of the gestures does a system recognize?

Physical Interaction'03 - Udine

Sensing system level

Task

Classification System

Sensor

Physical Signal

Precision - How well does sensor output represent the real world phenomenon?

Accelerometer – how big is the drift of the sensor, how high is the precision?

Sensing system level

Task

Classification System

Sensor

Physical Signal

Ambiguity - How well are different physical phenomena held apart?

hand movement – can two movements be held apart with the sensor in use?

- Iatency will continue to be a problem
- Sensor uncertainties will always remain
- even human can not solve problems without errors
- => so what can we do to make interaction
 better?

Designing HCI (1)

12

- insufficient robustness:
 - voice dialing beside noisy road
 - GPS can't see enough satellites
- feedback chains for error recovery
 - gesture pen: give subtle feedback for each step of the process, e.g. gesture recognized, transmitted, HiFi volume changed

gesture pen	transmit	
gesture //		process
local feedback	feedback for transmit	
ETH	& process	
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Physical Interaction'03 - Udine	

Designing HCI (2)

- quasimodes avoiding ambiguity
 - press button on the gesture pen while performing gesture
- non destructive presentation of results
 - example: handwriting recognition system adds recognized text beside handwritten text

- give the user a simple but correct
 mental model
- principle of least surprise
 - => keep system causal
- principle of fluid interaction
 - => don't disturb people with wrong results

=> need to be kept in mind while designing physical interaction

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thanks!

stavros.antifakos@inf.ethz.ch http://www.vision.ethz.ch/antifako/