
1

A Widget-Based Approach for Creating
Voice Applications

Andreas Hartl
TU Darmstadt

andreas@tk.informatik.tu-darmstadt.de
MobileHCI Workshop P03

September 8, 2003

2

Voice Interfaces: State of the Art

• Current Approaches
– Context Free Grammars
– Statistics Based

• Both relatively Low-Level

• Limited reuse of existing solutions

3

Mapping Between UI Layers

Lower-Level I/O

Adapted UI

<dlg_label> = "New Task"
<ff_input> = <text>
<list> = „urgent" | „need preparation" | …
<dialog> = <dlg_label> <ff_input> | <list>
… Logical UI

Dialog

Text List Optional

List

Voice:Dialog

Voice:List Voice:Optional

Voice:ShortListVoice:
FreeForm

Voice:Label

4

Logical UI/Abstract Widgets

• Object contents
– Abstract information about content
– Metadata

• Creating UIs
– 1 Widget = 1 Object
– Combination: combinatory widgets implement interfaces
– Sample Widgets: free-form input, date/time input,

confirmation, select 1 out of many, plain text output,
structured text output, hierarchical navigation, …

• Almost modality-independent?
– Low level widgets available

e.g. Audio-Playback, Bitmap

Dialog

Text List Optional

List

5

Dialog

Text List Optional

List

Logicalà Adapted UI

• Mapping-Service for Logicalà Adapted UI
à logical widgets don't map themselves

• Mapping dependent on
– UI Paradigm

– Device

– Metadata-hints in logical widgets

• Other than 1:1 mapping possible
– 1 logical : n physical – powerful logical widget to many

physical ones

– n logical : 1 physical – physical widget is multi-purpose

Mapping
Voice:Dialog

Voice:List Voice:Optional

Voice:ShortListVoice :
FreeForm

Voice:Label

Dialog

Text List Optional

List

6

Voice:Dialog

Voice:List Voice:Optional

Voice:ShortListVoice :
FreeForm

Voice:Label

Adapted UI
• Widgets specific for

– Interaction method
– Device
– I/O technology

• Widgets map themselves onto
I/O technology
– Generate CFG-Grammars
– Generate N-Grams

• Acting as Controller
– Widgets receive input
– Convert them into

networked events
– Applications subscribe

events

<dlg_label> = "New Task"
<ff_input> = <text>
<list> = „urgent" | „need preparation" | …
<dialog> = <dlg_label> <ff_input> | <list>
…

2

7

Conclusion

• Goal: provide higher level abstraction for voice
– Support for multiple modalities, multiple technologies

• Separation of UI: Logical UI – Adapted UI – I/O
• Logical UI abstacts via widgets

– Automatic mapping between logical UI & adapted UI
– Logical UI may fusion events from realization

• Adaptated UI
– modality & technology aware
– Create I/O constructs necessary
– Convert input into events

Spare Slides

(prepared for questions)

9

Setting within the Mundo-Project

Network

User

I/O

Logical UI
Adapted UI

UI Abstraction

Adaptation

Services

Service
Service

Service

Event-based ISC
DOLDOL DOL

End -to- end
Service Comm

Dist. Obj. Location

Comm

A
P

I ...

Storage

...

A
P

I

Services

A
P

I ...

Context
Basic Services

...

E
R

S
tr

ea
m

in
g

D
is

tS
to

r

B
io

S
to

r

R
eg

is
tr

y

M
ng

m
nt

S
en

so
r

IF

In
fe

re
nc

e

10

Research Objectives

• Current Approaches
– Grammar based
– Statistics based

• Abstracting approaches with widgets
– UIs are built combining standard controls
– Predictability & Re-Use
– Powerful
– Localization & device association made easier
– Embedded into group’s M UNDO project

• Evolutional approach
– Existing design-patterns (MVC) still valid
à Developers switch faster, QC easier

11

Widgets as Controller

• Adaptation Widgets receive input from I/O
technology

• Convert into network events

– Platform features event routing à Networking for free

• Logical widgets may refine events

– Disambiguation by fusioning multiple events

• Applications subscribe to widget-events

12

Technical Details:
How to map logicalà adapted UI

• Adaptation widgets must be registered : placed in
decision tree

• Decision tree layout:
– highest level = logical widget to map
– 2nd level = UI paradigm (e.g. voice)
– 3rd-nth level = paradigm specific

• Example: Free form text input
– w/ voice based interaction & JSGF:
Text/Voice/CFG/JSGF

– w/ SWT:
Text/GUI/SWT

3

13

Technical Details:
How to map logicalà adapted UI

• Automatic mapping available for 1:1 & n:1
– Existing logical widget
– Mapping service searches tree bottom-up
– Bottom-up works because by definition higher level nodes

are not dependent on lower level features
– n:1 easily possible: register more than once

• Example: find text widget for Server based ViaVoice

• More specific adaptation widgets override general
purpose ones

• Use OO features: if no mapping foundà try to map
abstract widget's base class

Text/Voice/CFG/JSGF/Server/ViaVoiceText/Voice/CFG/JSGF/ServerText/Voice/CFG/JSGF

14

Technical Details:
How to map logicalà physical UI

• Semi-automatic mapping for 1:n & user defined
mapping

• User defined mapping
– via plug ins to mapping service
– Define XPath expressions to select abitrary physical widgets

• Mapping 1:n
– via Proxy-Object
– Add physical widget that maps 1:1 to target
– Physical widget instantiates several other physical widgets

