
A Widget-Based Approach for Creating Voice Applications

Andreas Hartl
Telecooperation Group

Darmstadt University of Technology
Alexanderstrasse 6

Darmstadt, Germany

andreas@tk.informatik.tu-darmstadt.de

ABSTRACT
Voice based applications nowadays are difficult to author compared
to conventional ones; yet there is an increasing need for such appli-
cations in mobile environment. A reason for this difficulty is that
application developers must tackle with relatively low level pro-
gramming interfaces for voice based applications. This paper intro-
duces “audio widgets” – a notion of higher level building blocks
for such applications that ease modularizing and re-use.

1. INTRODUCTION
Voice based applications are an important building block of future
ubiquitous and mobile computing environments. The reason is that
such applications may be used in situations where hands and eyes
must be free to use – e.g. while driving a car – or that the device is
too small to support display and/or keyboard. Our research group
is currently developing such a device designed to be small enough
to fit into a headset [8].

While the concepts of interfaces based on windows, icons, menus
and pointers (WIMP-interfaces) are widely known and adopted by
programmers, there is no such generally adopted higher-level paradigm
for voice based user interfaces. Instead, developers have to deal
with various elements. For handling input, developers must deal
with the grammars supplying models to understand the users’ utter-
ances. In most cases, context-free grammars (CFGs) are used for
this purpose which consist of hand-crafted rules derived from the
developer’s inherent knowledge of the language or from corpus-
based linguistic knowledge. Especially n-gram based grammars
may be a powerful alternative in cases when the word order of the
input is irrelevant. The output of voice based applications usually
consists of either pre-recorded sentences or of textual data con-
verted into audio via a text-to-speech engine. For example whether
there should be acoustical clues for the users or whether the output
should be structured, developers must implement such solutions for
themselves.

One of the downsides of these approaches for voice based applica-
tions is that re-usability of grammars is very limited. Developers

This paper was presented at "Physical Interaction (PI03) Workshop on
Real World User Interfaces", a workshop at the Mobile HCI Conference
2003 in Udine (Italy). September 8, 2003. The copyright remains with
the authors. Further information and online proceedings are available at
http://www.medien.informatik.uni-muenchen.de/en/events/pi03/

are likely to re-implement most of the grammar if they encounter
similar problems in different applications. Another pitfall is inter-
nationalization which may require large part of the user interface
handling code to be rebuilt if other languages do not resemble the
original language closely.

This paper presents an approach that implements the notion of wid-
gets from GUIs to audio based user interfaces. Whereas the term
widget originally is targeted towards window gadgets, we conceive
it to be much more general, as a high level building block of user
interfaces. The idea of “audio widgets” therefore is a generalization
of the idea of graphical widgets; in both cases widgets are higher
level building blocks that abstract the core functionality of the inter-
face (drawing pixels or creating grammars). Furthermore, the idea
may easily be extended to other modalities as well, e.g. gestures or
hardware buttons.

2. EXISTING SOLUTIONS
2.1 Context Free Grammars
Most solutions commercially available support context free gram-
mars. Rules for such grammars usually are authored in a BNF-like
notation and may include references to other rules, text literals and
variable names as well as designators for optional and repeatable
elements.

When authoring a rule one can use the following techniques: se-
quences for elements that occur after another, alternatives, optional
elements and iterations of elements. Often also some form of re-
cursion is allowed.

The Java Speech API Grammar Format [10] (JSGF) is a platform
and vendor independent textual representation of CFGs. It targets
only voice input as the application may use an arbitrary Java API
for generating the output. The Java Speech API provides means
for loading and deleting grammars into a speech recognizer and the
ability to create a grammar at runtime. JSGF grammars provide a
set of rules which may be activated and deactivated once loaded.
Each rule must have a unique name in order to reference it. In
order to prevent naming conflicts, rules may be put into packages
which provide separate namespaces. A rule may contain literal text,
or reference to other rules. When using references right recursions
are allowed. Programmers of the JSGF define the grammars in their
application and apply them as necessary. They receive events once
a particular grammar matches; programmers are free to interpret
and handle these events as needed.

While JSGF extends the Java platform by additional means of input
and output, VoiceXML [12] has a broader view towards voice based

http://www.medien.informatik.uni�muenchen.de/en/events/pi03/


applications, it also targets output and navigation. VoiceXML ap-
plications are similar to web based applications: they are created by
a server-side scripting technology and then interpreted by a Voice
Browser which combines voice recognition and text-to-speech en-
gines. VoiceXML applications consist of several forms that contain
audio output and may define fields for entering data. VoiceXML
provides several pre-defined fields for often used input elements
(e.g. free form text, numbers, selections), developers can also use
grammars to create their own fields. For navigation, VoiceXML
forms can use URLs to link to others; also there is a special con-
struct for menus that automatically creates the grammar necessary
to select an entry. Currently VoiceXML only supports CFGs to an
extent similar to JSGF and a grammar format for tone dial phones,
although there are attempts to allow other grammars as well [11].

2.2 N-Grams
There are several types of statistics based grammars, the most widely
used are N-Grams. N-Grams use a matrix that describes the proba-
bility of any word being entered based on an arbitrarily sized vector
of previously recognized words. Compared to CFGs, n-gram based
grammars are rarely used in commercial products.

N-grams are difficult to author as they usually are created using a
sample text that is analyzed for its probabilities. This means that
the text must be representative of future inputs. If an n-gram does
not prove to be useful, one must alter the sample text and re-analyze
it which leads to long development times when compared to CFGs.
Yet there are some methods that ease creating n-grams either by
using intermediate representations of the sample text, e.g. CFGs [4]
or by using local n-grams which are merged together [9].

3. AUDIO WIDGETS
The idea of audio widgets was developed as part of our group’s
MUNDO project [5]. One of the goals of this project is to deliver a
basic device that can operate hands- and eyes-free so that its user
can focus on the task she is doing. Additionally, the device should
work both in a disconnected and an online environment, with the
ability to enhance its built in speech recognition by a server-based
one if it is online.

We found that this was difficult to achieve using an approach based
only on grammar descriptions for several reasons:

� Application designers must make a tradeoff between respon-
siveness and robustness of the system (the less rules the bet-
ter) and ease of use (the more rules the better). In case of a
dynamic environment which may change from online to dis-
connected mode and back again, the rule sets for both modes
may differ strongly because of the limited capabilities of the
built in recognition engine.

� If a recognition engine has special features (e.g. n-gram
grammars), developers must explicitly write code using these
features. Therefore, an upgraded engine may have little to no
impact on existing programs.

� MUNDO will allow users to associate other devices to the
basic device. Such other devices may feature additional out-
put capabilities such as displays. If developers wanted to use
such multimodal environments with grammar based applica-
tions, they would have to write an additional graphical user
interface by hand.

Dialog
Title: Schedule Appointment

Logical Group

Date/Time
Title: “Start”
default Date: today
default Time: now
confirmation required

Date/Time
Title: “End”
default Date: start Date
default Time: start Time + 1h
confirmation required

String
Title: “Subject”

Boolean
Title: “private”

Figure 1: The logical tree of a dialog for a time scheduling ap-
plication

In order to circumvent these issues, we use audio widgets as an
higher level representation of the developer’s intent. When using
widgets, one must not change the application but only the widget
instance to adapt to changes of the underlying recognition engine.
Additionally application developers do not have learn how to author
different grammars as this task is delegated to the widget developer.

3.1 Architecture
MUNDO defines an abstraction layer that differentiates between a
logical user interface and its realization. Application developers
specify the logical content using abstract widget items that form a
tree. The tree contains the data types to be input and output as well
as meta- data describing e.g. the title of the element, its priority and
recommended presentations of the widget.

Figure 1 shows a tree for the logical user interface for scheduling
appointments. The tree’s leaves specify logical widgets that define
the data type to be entered and the meta-data necessary to identify
the widget. The title may be rendered into prompts, can be used to
disambiguate input data (“Set start date to tomorrow”), etc. Other
meta-data entries define default elements and whether the content
should be entered explicitly or whether the user just needs to ac-
knowledge precalculated data. The logical tree also serves as a
means for structuring widgets into related elements. In the above
figure, the date/time entries are more closely related to each other,
so they are contained inside a logical group. The software that
transforms the logical into the realization tree uses the grouping as
a hint that it should place the widgets in the same hierarchy level.

At runtime we transform the tree for the logical user interface into
a tree of concrete widgets based on the knowledge of the device.
Such a transformation may map one or more logical widget to one
realization widget and it may flatten or raise the hierarchy of the
tree (c.f. [1, 2]).

Such a layer of indirection has been proven useful in the past [6] –
a device is not required to support all logical widgets (as many of
them may be mapped to one realization widget) thus saving space
which is a crucial point for embedded devices. The varying hier-
archy allows easy access to all information in cases when the envi-
ronment permits it – e.g. if the server side speech recognition can
resolve ambiguities – and fast access to crucial information in lim-
ited environments at the cost of users having to traverse additional
hierarchy levels for less important information. Also, this archi-
tecture can be easily adapted to support additional modalities. For
example, in order to render a logical widget onto a GUI, the GUI’s
own widgets can be used as realization widgets.



Finally, the runtime environment creates the concrete representa-
tion of the widgets specific for the environment out of the realiza-
tion widget. For voice based applications, input widgets are con-
verted either into CFGs of different grammar formats or into other
grammar specifications available within the environment; output
widgets typically are transformed into wave audio using text-to-
speech (with parameters set by the widget) or prerecorded audio.
Realization widgets are transformed into the appropriate represen-
tation as near to the device as possible – in most cases this will be
done on the device itself.

While this paper explicitly targets voice based interaction, the ar-
chitecture for mapping logical widgets is extensible. They may be
mapped onto several other modalities apart from voice and graph-
ics. We are currently extending the headset device by a limited
number of buttons and a weel for entering continuous data. In a
next step, we will adopt the widget paradigm to this additional in-
put modality. One could also think of gesture based input widget
or of an output widget that renders status information to a device
glowing in different colors for different statuses.

3.2 Developing Widgets
Disconnecting the design of grammars from the design of audio
widgets also means, that there is a need for a set of standard wid-
gets. Also, it should be possible to create new widgets as special
needs for inputting and outputting data arise. The design of realiza-
tion widgets and logical widgets should be comparable, even it the
latter ones deal with higher level abstractions. For logical widgets,
developers must provide a mapping to the appropriate realization
widgets, for realization ones a mapping to grammars and parame-
ters of the speech synthesis.

Although developers can develop entirely new widgets just by cre-
ating new classes, it is advisable to subclass already existing ones.
In most cases, the development of new widgets will result in adding
additional constraints to already existing ones. By constraining
widgets, one can easily model affordances into the user interface
while utilizing the power of the general purpose widgets: they are
fine tuned to the execution environment and abstract from the gram-
mar used – in a mobile environment a widget can consist of a CFG
minimizing the recognizer’s complexity, in server based environ-
ments it may use a more powerful recognition engine without fur-
ther modifications.

A likely candidate for subclassing is the select one out of many
list which presents its users a set of mutually exclusive choices. In
the general case, this list should support arbitrarily long lists which
means that, when prompting the user, it only gives away its title.
To create a logical widget for entering booleans, a developer can
subclass the list and make the following modifications:

� Create a prompt that indicates that this is a question with the
answers “yes” and “no”

� Fill the list with standard items that are possible answers.
This may include items such as “yeah” and “nope”

� Provide a mapping from the list item selected by the user to
the appropriate boolean value

By using a list instead of creating an entirely new widget, this new
boolean widget benefits from various implementations of the exist-
ing widget.

3.3 Prototype
We have developed a prototype that implements a dialer functional-
ity for a Voice over IP application using audio widgets. Currently, it
uses only two types of widgets: a descriptive text that is rendered by
a text-to-speech synthesizer and the “1 out of many list” mentioned
above. The descriptive text is used in the prototype whenever the
application wants to create a prompt for the user, the list contains
the names of all members in our research group.

The prototype is written in Java and uses IBM’s JSGF implemen-
tation based on ViaVoice. As a text-to-speech engine, it uses the
default ViaVoice implementation without any modifications. For
input recognition, it converts widgets into context free grammars.
Currently there exists a 1:1 mapping from logical to realization
widgets, although we have a graphical representation of logical
widgets as well for debugging purposes. We are now working on
a second widget-set for restricted environments such as the hands
free device mentioned above.

The grammar of the list widget is created in such a way that users
may say only a part of any list entry to select it, e.g. the first name.
This may lead to ambiguities which the widget can deal with in a
limited way. If a user’s utterance affects several items, the widget
creates a new grammar that allows only selecting one of the am-
biguous items and prompts the user to resolve the ambiguity.

For comparison we have designed a similar user interface using
VoiceXML. We have experienced that VoiceXML is efficient if
the full content of a list item is necessary to select it; in such
a case a <menu> element is sufficient. Depending on the voice
browser, the <menu> element may even support selecting an item
by DTMF tones. Yet, if one wants to allow ambiguities such as the
widget-based application, the developer must write grammars sim-
ilar to those automatically created by the widget. In that case the
VoiceXML solution is notably bulky compared to the widget based
prototype.

3.4 Future Work
As a next step, we plan to research basic building blocks of voice
based applications and develop widgets after them. The work al-
ready done in this area for graphical user interfaces [3] may ease
this task. Currently we have identified the following often used
types of input widgets: free form input that pass the recognized in-
put to the application without further modification, an audio input
widget that simply records data, a list that lets users select one entry
out of many, a list that allows multiple selections, a boolean input
field for yes/no questions, an input field for numbers and a widget
for selecting the date and/or the time.

Especially the date/time widget must deal with various types of
input data: Not only absolute input like “December, 24th, 2004”
but also with relative input “tomorrow after the meeting”. In order
to correctly recognize the utterances, audio widgets must therefore
have better knowledge of the environment they are deployed in than
graphical ones. An easy way for achieving this is to give widgets
the possibility to let widgets access the application’s logical tree at
runtime.

For the basics of outputting data, we are going to use audio output
widgets that play back audio files and labels which are rendered by
text-to-speech. Additionally, we are planing to deploy a widget for
structured audio output [7] which allows browsing through larger
amounts of text. We have yet to investigate if developers can create



applications featuring ambient audio using any output widget and
simply use it as a background or if a specialized ambient audio
widget will be necessary. We also are going to extend the idea of
widget based user interfaces towards other modalities.

As usual for user interface based research, it also will be neces-
sary to make extensive usability tests (c.f. [13]). We are currently
building a small set of audio based devices which support basic
personal digital assistant functionality; the dialer prototype being
one of its functionalities. Other applications will be accessing the
personal calendar and scheduling new appointments, creating per-
sonal notes and listening to streaming audio. We plan to equip stu-
dents with these devices and let them try to accomplish predesigned
tasks; with a field test following where students should use the de-
vices to ease their daily life at the university.

4. CONCLUSION
We have introduced an approach that introduces the concept of wid-
gets to audio based applications. This creates a layer of abstraction
between the application and the type of grammar used by the recog-
nition engine thus enhancing portability and easing the process of
developing the application.

We introduced trees of logical widgets which represent the data to
be input and output along with meta-data augmenting the logical
widgets. We described how these logical trees are transformed to
trees of realization widgets based on the user’s devices’ capabili-
ties and the supported modalities; the realization widgets then are
transformed into the lower level representation required by the de-
vice.

We showed an example of how widget developers may use already
existing widgets and subclass them in order to introduce additional
constraints to the interface. We also showed a prototype application
based on basic audio widgets and compared it to an application
created using VoiceXML.

Finally, we have identified the main challenges of further devel-
oping audio widgets which are finding out the core widgets and
evaluating user interfaces based on audio widgets.

5. REFERENCES
[1] J. Eisenstein and A. R. Puerta. Adaptation in automated

user-interface design. In Intelligent User Interfaces, pages
74–81, 2000.

[2] J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying
Model-Based Techniques to the Development of UIs of
Mobile Computers. In Proc. of Intelligent User Interfaces,
pages 69–76, Jan 2001.

[3] H.-W. Gellersen. Methodische Entwicklung flexibler
interaktiver Software. PhD thesis, Karlsruhe, 1995.

[4] J. Gillett and W. Ward. A language model combining
trigrams and stochastic context-free grammars. In 5-th
International Conference on Spoken Language Processing,
pages 2319–2322, 1998.

[5] A. Hartl, E. Aitenbichler, G. Austaller, A. Heinemann,
T. Limberger, E. Braun, and M. Mühlhäuser. Engineering
Multimedia-Aware Personalized Ubiquitous Services. In
IEEE Fourth International Symposium on Multimedia
Software Engineering, pages 344–351, 2002.

[6] A. Hartl, G. Austaller, G. Kappel, C. Lechleitner,
M. Mühlhäuser, S. Reich, and R. Rudisch. Gulliver – A
Development Environment for WAP Based Applications. In
The Ninth International World Wide Web
Conference.Amsterdam, NL, 2000.

[7] F. James. Representing Structured Information in Audio
Interfaces: A Framework for Selecting Audio Marking
Techniques to Represent Document Structures. PhD thesis,
Stanford, 1998.

[8] M. Mühlhäuser and E. Aitenbichler. The Talking Assistant
Headset: A Novel Terminal for Ubiquitous Computing. In
Microsoft Summer Research Workshop, Cambridge, Sep
2002.

[9] A. Nasr, Y. Estève, F. Bechet, T. Spriet, and R. de Mori. A
Language Model Combining N-grams and Stochastic Finite
State Automata. In Eurospeech’99, volume 5, pages
2175–2178, 1999.

[10] Sun Microsystems. Java Speech Grammar Format Version
1.0. http://java.sun.com/products/java-
media/speech/forDevelopers/JSGF.pdf, Oct
1998.

[11] W3C. Stochastic Language Models (N-Gram) Specification
(W3C Working Draft).
http://www.w3.org/TR/2001/WD-ngram-spec-20010103/,
Jan 2001.

[12] W3C. Voice Extensible Markup Language (VoiceXML)
Version 2.0.
http://www.w3.org/TR/2003/CR-voicexml20-20030220/,
Feb 2003.

[13] N. Yankelovich, G.-A. Levow, and M. Marx. Designing
SpeechActs: Issues in Speech User Interfaces. In CHI, pages
369–376, 1995.

http://java.sun.com/products/javamedia/speech/forDevelopers/JSGF.pdf
http://www.w3.org/TR/2001/WD-ngram-spec-20010103/
http://www.w3.org/TR/2003/CR-voicexml20-20030220/

